Constructing a Nonmeasurable Set

Let \(X = [0, 1) \) and define the operation \(\oplus : X \rightarrow X \) by addition modulo 1. (Note: \(X \) is then equivalent to the unit circle via \(t \mapsto e^{2\pi it} \).) Let \(A \oplus x = \{ a \oplus x \mid a \in A \} \).

Define the relation \(\sim \) by

\[x \sim y \text{ if and only if there is a rational } r \text{ such that } |x - y| = r \]

Exercises.

1. Show that for each rational \(r \), we have \(r \sim 0 \), and so all rationals are equivalent under \(\sim \).
2. Prove that \(\sim \) is an equivalence relation on \(X \).
3. Find \([0] \).

Consider \(x_1 = \pi/10 \) and \(x_2 = \pi/30 \). Since \(x_1 - x_2 = \pi/15 \notin \mathbb{Q} \), then \([x_1] \neq [x_2] \). Now consider \(x_3 = (\pi + 5)/10 \). Since \(x_1 - x_3 = 1/2 \in \mathbb{Q} \), we have that \([x_1] = [x_3] \).

Since \(\sim \) is an equivalence relation, it partitions \(X \). Choose a representative \(h \) from each equivalence class in the partition of \(X \). (Axiom of Choice!) Gather these elements to form the set \(H \). Consider the collection of these sets \(\mathcal{H} = \{ H \oplus r \} \) where \(r \) ranges over the rationals in \(X \).

Exercises.

4. Determine whether \(H \) is countable or uncountable.
5. Verify that \(\mathcal{H} \) is a pairwise-disjoint family; i.e., \((H \oplus r_1) \cap (H \oplus r_2) = \emptyset \) for \(r_1 \neq r_2 \).
6. Prove that \(X = \bigcup_{r \in \mathbb{Q} \cap X} (H + r) \).

Since Lebesgue measure is translation invariant, \(\mu(H \oplus r) = \mu(H) \) for all \(r \in \mathbb{Q} \cap X \). Assume that \(H \) is Lebesgue measurable with \(\mu(H) = \lambda \). Then, since \(\mathcal{H} \) is a countable family of disjoint sets,

\[
1 = \mu(X) = \mu \left(\bigcup_{r \in \mathbb{Q} \cap X} (H + r) \right) = \sum_{r \in \mathbb{Q} \cap X} \lambda
\]

We have a contradiction: If \(\lambda = 0 \), then \(1 = 0 \). Otherwise, if \(\lambda > 0 \), then \(1 = \infty \). Thus \(H \) cannot be Lebesgue measurable.

This construction is due to Giuseppe Vitali. (See also Vitali covering.)