The “Big M” Method

Modify the LP

1. If any functional constraints have negative constants on the right side, multiply both sides by -1 to obtain a constraint with a positive constant.
The “Big M” Method

Modify the LP

1. If any functional constraints have negative constants on the right side, multiply both sides by -1 to obtain a constraint with a positive constant.

2. Introduce a **slack variable** $s_i \geq 0$ for each ‘\leq’ constraint.
The “Big M” Method

Modify the LP

1. If any functional constraints have negative constants on the right side, multiply both sides by -1 to obtain a constraint with a positive constant.

2. Introduce a **slack variable** $s_i \geq 0$ for each ‘\leq’ constraint.

3. Introduce a **surplus variable** $s_j \geq 0$ and an **artificial variable** $\bar{x}_i \geq 0$ for each ‘\geq’ constraint.
The “Big M” Method

Modify the LP

1. If any functional constraints have negative constants on the right side, multiply both sides by -1 to obtain a constraint with a positive constant.

2. Introduce a **slack variable** $s_i \geq 0$ for each ‘\leq’ constraint.

3. Introduce a **surplus variable** $s_j \geq 0$ and an **artificial variable** $\bar{x}_i \geq 0$ for each ‘\geq’ constraint.

4. Introduce an **artificial variable** $\bar{x}_j \geq 0$ in each ‘$=$’ constraint.
The “Big M” Method

Modify the LP

1. If any functional constraints have negative constants on the right side, multiply both sides by -1 to obtain a constraint with a positive constant.

2. Introduce a **slack variable** $s_i \geq 0$ for each ‘\leq’ constraint.

3. Introduce a **surplus variable** $s_j \geq 0$ and an **artificial variable** $\bar{x}_i \geq 0$ for each ‘\geq’ constraint.

4. Introduce an **artificial variable** $\bar{x}_j \geq 0$ in each ‘$=$’ constraint.

5. For each artificial variable \bar{x}_i, add a **penalty term** ‘$-M\bar{x}_i$’ to the objective function. Use the same constant M for all the artificial variables. (*In numerical software, use a very large number for M.*)
Example (Big M in Action)

Maximize $P = 2x_1 + x_2$

subject to

\[
\begin{align*}
 x_1 + x_2 &\leq 10 \\
 -x_1 + x_2 &\geq 2
\end{align*}
\]

with $x_1, x_2 \geq 0$.

Use Maple
The “Big M” Method: Example

Example (Big M in Action)

Maximize $P = 2x_1 + x_2$
subject to

\[x_1 + x_2 \leq 10 \]
\[-x_1 + x_2 \geq 2 \]

with $x_1, x_2 \geq 0$.

The Big M Simplex Tableau

<table>
<thead>
<tr>
<th>Eq</th>
<th>Z</th>
<th>x_1</th>
<th>x_2</th>
<th>s_1</th>
<th>s_2</th>
<th>\bar{x}_1</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0)</td>
<td>1</td>
<td>-2</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>M</td>
<td>0</td>
</tr>
<tr>
<td>(1)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>(2)</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
Exercise (O-Jay)

O-Jay is a mixture of orange juice and orange soda. We need to restrict the amount of sugar to 4gm/bottle and maintain at least 20mg/bottle of vitamin C. What is the least cost mixture?

Let:

- $x_1 = \text{number of ounces of orange soda in a bottle of O-Jay}$
- $x_2 = \text{number of ounces of orange juice in a bottle of O-Jay}$

The LP is:

Minimize $z = 2x_1 + 3x_2$

subject to

- $0.5x_1 + 0.25x_2 \leq 4$ \hspace{1cm} (sugar constraint)
- $x_1 + 3x_2 \geq 20$ \hspace{1cm} (Vitamin C constraint)
- $x_1 + x_2 = 10$ \hspace{1cm} (10 oz in per bottle)

with $x_1, x_2 \geq 0$
The “Big M” Method: Summary

Summary

1. If the problem is “minimize Z,” change to “maximize $(-Z)$.”
2. Add a slack variable s_i to change ‘\leq’ to ‘$=$’.
3. Subtract a surplus variable s_j and add an artificial variable \bar{x}_j to change ‘\geq’ to ‘$=$’.
4. Add an artificial variable \bar{x}_k to each ‘$=$’ constraint.
5. Add ‘$-M \bar{x}_j$’ to the objective function for each artificial variable \bar{x}_j.
6. Use a row operation with each artificial variable row to eliminate M from the objective function in \bar{x}_j columns.
7. Run the simplex algorithm.
The “Big M” Method: Summary

Summary

1. If the problem is “minimize Z,” change to “maximize (-Z).”
Summary

1. If the problem is “minimize Z,” change to “maximize (-Z).”

2. Add a slack variable s_i to change ‘≤’ to ‘=’.
The “Big M” Method: Summary

Summary

1. If the problem is “minimize Z,” change to “maximize (-Z).”

2. Add a slack variable s_i to change ‘\leq’ to ‘$=$’.

3. Subtract a surplus variable s_j and add an artificial variable \bar{x}_j to change ‘\geq’ to ‘$=$’.
The “Big M” Method: Summary

Summary

1. If the problem is “minimize Z,” change to “maximize (-Z).”

2. Add a slack variable s_i to change ‘\leq’ to ‘$=$’.

3. Subtract a surplus variable s_j and add an artificial variable \bar{x}_j to change ‘\geq’ to ‘$=$’.

4. Add an artificial variable \bar{x}_k to each ‘$=$’ constraint.
The “Big M” Method: Summary

Summary

1. If the problem is “minimize Z,” change to “maximize $(-Z)$.”

2. Add a slack variable s_i to change ‘\leq’ to ‘$=$’.

3. Subtract a surplus variable s_j and add an artificial variable \bar{x}_j to change ‘\geq’ to ‘$=$’.

4. Add an artificial variable \bar{x}_k to each ‘$=$’ constraint.

5. Add ‘$-M\bar{x}_j$’ to the objective function for each artificial variable \bar{x}_j.
The “Big M” Method: Summary

Summary

1. If the problem is “minimize Z,” change to “maximize ($-Z$).”

2. Add a slack variable s_i to change \leq to \equiv.

3. Subtract a surplus variable s_j and add an artificial variable \bar{x}_j to change \geq to \equiv.

4. Add an artificial variable \bar{x}_k to each \equiv constraint.

5. Add $-M \bar{x}_j$ to the objective function for each artificial variable \bar{x}_j.

6. Use a row operation with each artificial variable row to eliminate M from the objective function in \bar{x}_j columns.\(^1\)

\(^1\) Just operate on Row (0), the objective function, to reduce arithmetic.
The “Big M” Method: Summary

Summary

1. If the problem is “minimize Z,” change to “maximize $(-Z)$.”

2. Add a slack variable s_i to change ‘\leq’ to ‘$=$’.

3. Subtract a surplus variable s_j and add an artificial variable \bar{x}_j to change ‘\geq’ to ‘$=$’.

4. Add an artificial variable \bar{x}_k to each ‘$=$’ constraint.

5. Add ‘$-M\bar{x}_j$’ to the objective function for each artificial variable \bar{x}_j.

6. Use a row operation with each artificial variable row to eliminate M from the objective function in \bar{x}_j columns.¹

7. Run the simplex algorithm.

¹Just operate on Row (0), the objective function, to reduce arithmetic.
The “Big M” Method: Big Example

Example (Big “Big M”)

Maximize

\[Z = 2x_1 + 5x_2 + 3x_3 \]

subject to

\[
\begin{align*}
 x_1 + 2x_2 - x_3 & \leq 7 \\
 -x_1 + x_2 - 2x_3 & \leq -5 \\
 x_1 + 4x_2 + 3x_3 & \geq 1 \\
 2x_1 - x_2 + 4x_3 & = 6
\end{align*}
\]

with \(x_1, x_2, x_3 \geq 0 \).
The “Big M” Method: Big Example

Example (Big “Big M”)

Maximize \[Z = 2x_1 + 5x_2 + 3x_3 \]
subject to
\[
\begin{align*}
x_1 + 2x_2 - x_3 & \leq 7 \\
nx_1 + x_2 - 2x_3 & \leq -5 \\
x_1 + 4x_2 + 3x_3 & \geq 1 \\
2x_1 - x_2 + 4x_3 & = 6
\end{align*}
\]
with \quad x_1, x_2, x_3 \geq 0.

Variables

There are:

• 3 decision variables \(x_i \)
• 1 slack variable \(s_1 \)
• 2 surplus variables \(s_j \)
• 3 artificial variables \(\bar{x}_j \)
Example (Big "Big M")

Maximize \[Z = 2x_1 + 5x_2 + 3x_3 \]
subject to

\[x_1 + 2x_2 - x_3 \leq 7 \]
\[-x_1 + x_2 - 2x_3 \leq -5 \]
\[x_1 + 4x_2 + 3x_3 \geq 1 \]
\[2x_1 - x_2 + 4x_3 = 6 \]

with \[x_1, x_2, x_3 \geq 0. \]

Variables

There are:

- 3 decision variables \[x_i \]
The “Big \(M \)” Method: Big Example

Example (Big “Big M”)

Maximize \(Z = 2x_1 + 5x_2 + 3x_3 \)

subject to

\[
\begin{align*}
 x_1 + 2x_2 - x_3 & \leq 7 \\
 -x_1 + x_2 - 2x_3 & \leq -5 \\
 x_1 + 4x_2 + 3x_3 & \geq 1 \\
 2x_1 - x_2 + 4x_3 & = 6
\end{align*}
\]

with \(x_1, x_2, x_3 \geq 0 \).

Variables

There are:

- 3 decision variables \(x_i \)
- 1 slack variable \(s_1 \)
The “Big M” Method: Big Example

Example (Big “Big M”)

Maximize \[Z = 2x_1 + 5x_2 + 3x_3 \]
subject to
\[
\begin{align*}
x_1 + 2x_2 - x_3 & \leq 7 \\
-x_1 + x_2 - 2x_3 & \leq -5 \\
x_1 + 4x_2 + 3x_3 & \geq 1 \\
2x_1 - x_2 + 4x_3 & = 6
\end{align*}
\]
with \(x_1, x_2, x_3 \geq 0 \).

Variables

There are:
\begin{itemize}
 \item 3 decision variables \(x_i \)
 \item 1 slack variable \(s_1 \)
 \item 2 surplus variables \(s_j \)
\end{itemize}
Example (Big “Big M”)

Maximize

\[Z = 2x_1 + 5x_2 + 3x_3 \]

subject to

\[
\begin{align*}
x_1 + 2x_2 - x_3 & \leq 7 \\
-x_1 + x_2 - 2x_3 & \leq -5 \\
x_1 + 4x_2 + 3x_3 & \geq 1 \\
2x_1 - x_2 + 4x_3 & = 6
\end{align*}
\]

with \(x_1, x_2, x_3 \geq 0. \)

Variables

There are:

- 3 decision variables \(x_i \)
- 1 slack variable \(s_1 \)
- 2 surplus variables \(s_j \)
- 3 artificial variables \(\bar{x}_j \)
The “Big M” Method: Big Example

Initial Artificial Problem Tableau

<table>
<thead>
<tr>
<th>BV</th>
<th>Eq</th>
<th>Z</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>s_1</th>
<th>s_2</th>
<th>s_3</th>
<th>\bar{x}_1</th>
<th>\bar{x}_2</th>
<th>\bar{x}_3</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0)</td>
<td>1</td>
<td></td>
<td>−2</td>
<td>−5</td>
<td>−3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>0</td>
</tr>
<tr>
<td>s_1</td>
<td>(1)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>−1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>\bar{x}_1</td>
<td>(2)</td>
<td>0</td>
<td>1</td>
<td>−1</td>
<td>2</td>
<td>0</td>
<td>−1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>\bar{x}_2</td>
<td>(3)</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>−1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>\bar{x}_3</td>
<td>(4)</td>
<td>0</td>
<td>2</td>
<td>−1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>
The “Big M” Method: Big Example

Initial Artificial Problem Tableau

<table>
<thead>
<tr>
<th>BV</th>
<th>Eq</th>
<th>Z</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>s_1</th>
<th>s_2</th>
<th>s_3</th>
<th>\bar{x}_1</th>
<th>\bar{x}_2</th>
<th>\bar{x}_3</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0)</td>
<td>1</td>
<td>-2</td>
<td>-5</td>
<td>-3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>s_1</td>
<td>(1)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>\bar{x}_1</td>
<td>(2)</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>2</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>\bar{x}_2</td>
<td>(3)</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>\bar{x}_3</td>
<td>(4)</td>
<td>0</td>
<td>2</td>
<td>-1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>

Beginning Simplex Tableau

<table>
<thead>
<tr>
<th>Eq</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>s_1</th>
<th>s_2</th>
<th>s_3</th>
<th>\bar{x}_1</th>
<th>\bar{x}_2</th>
<th>\bar{x}_3</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0)</td>
<td>-2</td>
<td>-5</td>
<td>-3</td>
<td>-9</td>
<td>0</td>
<td>M</td>
<td>M</td>
<td>0</td>
<td>0</td>
<td>-12M</td>
</tr>
<tr>
<td>(1)</td>
<td>1</td>
<td>2</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>(2)</td>
<td>1</td>
<td>-1</td>
<td>2</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>(3)</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(4)</td>
<td>2</td>
<td>-1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>