Proposition 1 (Sequence Ratio Test). Let \(\{a_n\} \) be a sequence with nonzero terms and set \(r = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \).

- If \(r < 1 \), then \(a_n \to 0 \).
- If \(r = 1 \), the test fails.
- If \(r > 1 \), then \(a_n \) diverges and \(|a_n| \to \infty \).

Example 1. Give nontrivial examples of sequences \(\{a_n\} \)

1. with \(r < 1 \)

2. with \(r = 1 \) and

 (a) \(a_n \to 2 \)

 (b) \(a_n \to \infty \)

 (c) \(a_n \) oscillates and is bounded

 (d) \(a_n \) oscillates and is unbounded

3. with \(r > 1 \) and

 (a) \(a_n \to \infty \)

 (b) \(a_n \) diverges and \(|a_n| \to \infty \)
Definition 1 (Rate of Convergence). Suppose that $a_n \to A$ and $b_n \to 0$. Then a_n converges to A with rate of convergence b_n if there is a real constant K such that

$$|a_n - A| \leq K \cdot |b_n|$$

eventually. Then

$$a_n = A + O(b_n).$$

Example 2. Give nontrivial examples or arguments justifying (not formal proofs) the following statements.

1. Show that $c_n = 2n/(n+1)$ converges to 2 with rate of convergence $1/n$. Thus $c_n = 2 + O(1/n)$.

2. Give an example of a sequence that
 - converges to 4
 - has rate of convergence $O(1/n^2)$

3. Let d_n be given by

 $$d_n = \frac{3n^3 + 5n^2 + n + 1}{4n^3 + 3n^2 + 2n + 1}$$

 Find

 (a) $\lim_{n \to \infty} d_n$

 (b) the rate of convergence of d_n