2.4 Monotone Sequences

Definition 1. A sequence \(\{a_n\} \) is

1. increasing

2. eventually increasing

3. strictly increasing

4. eventually strictly increasing

- List three equivalent statements for: \(\{a_n\} \) is decreasing.

- Let \(c_n = \frac{(3n - 2)(n^2 + 1)}{n^3} \). Graph \(c_n \) v \(n \) and the range of \(c_n \).

Theorem 1. If \(\{a_n\} \) is an eventually increasing sequence, then either

1. \(\{a_n\} \) is bounded by some \(M \). Then there is an \(L \leq M \) such that \(\lim_{n \to \infty} a_n = L \).

or

2. \(\{a_n\} \) is unbounded. Then \(\lim_{n \to \infty} a_n = \infty \).
Proof. ‘Wolog’ let \(\{a_n\} \) be an increasing sequence. How is this without-loss-of-generality?

(a) Suppose that \(M \) is a bound for \(\{a_n\} \).
Let \(S = \{a_n \mid n \in \mathbb{N}\} \) be the range of \(a_n \). Then \(S \) is a set of real numbers bounded above by \(M \). Why?

Therefore \(S \) has a supremum. Why? Let \(\sup S = L \). Then \(L \leq M \).

Let \(\varepsilon > 0 \). (NTS: \(a_n \to L \); i.e., there is an \(n^* \) so that for any \(n > n^* \), we have \(|a_n - L| < \varepsilon \).)
Since \(L = \sup S \), there is an \(n^* \in \mathbb{N} \) such that

\[a_{n^*} > L - \varepsilon. \]

Why?

If \(n > n^* \), then

\[L - \varepsilon < a_{n^*} \leq a_n \leq L < L + \varepsilon. \]

Why?

That is, for any \(\varepsilon > 0 \) we can find an \(n^* \in \mathbb{N} \) such that if \(n > n^* \), then \(|a_n - L| < \varepsilon \). Thus \(a_n \) converges to \(L \).

(b) Suppose there is no upper bound for \(\{a_n\} \).
Exercice!

- Let \(1 < p \in \mathbb{R} \). Determine whether the sequence \(c_n = n^p/p^n \) is eventually monotone.

- Investigate the sequence \(d_n = \sqrt{n^2 + n} - n \).
 1. Is \(d_n \) bounded? Above? Below?
 2. Is \(d_n \) increasing? Decreasing? Neither?
 3. Does \(d_n \) converge?