Asymptotic Notation

Let \(x \) be a variable tending to a limit \(x_0 \) or infinity. Also, let \(\phi(x) \) be a positive function and \(f(x) \) be any function. Then [following Hardy and Wright (1979)] define

1. \(f(x) = O(\phi(x)) \) to mean that \(|f(x)| < A\phi(x) \) for some constant \(A \) and all values of \(x \) near \(x_0 \) or, if \(x_0 = \infty \), all values \(x > M \) for some constant \(M \).

2. \(f(x) = o(\phi(x)) \) to mean that \(\lim f(x)/\phi(x) = 0 \) as \(x \to x_0 \) or \(\infty \).

3. \(f \sim \phi \) to mean that \(\lim f(x)/\phi(x) = 1 \) as \(x \to x_0 \) or \(\infty \).

Note: \(f(x) = o(\phi(x)) \) implies and is stronger than \(f(x) = O(\phi(x)) \).

The term Landau symbols\(^1\) is sometimes used to refer the big-\(O\) and little-\(o\) notations.

REFERENCES:

Examples

1. If \(p(x) = 7x^5 + x^4 - 2x^2 + 4 \), then \(p(x) = O(x^5) \) as \(x \to \infty \).

2. If \(f(x) = \sin(x^2) \), then

 a. \(f(x) = O(1) \) as \(x \to \infty \).

 b. \(f(x) = O(x^2) \) as \(x \to 0 \).

 c. \(f(x) = o(x) \) as \(x \to 0 \), but \(f(x) \neq o(x^2) \) as \(x \to 0 \).

3. If \(n \in \mathbb{N} \), then

 a. \(x^n = O(e^x) \) as \(x \to \infty \).

 b. \(x^n = o(e^x) \) as \(x \to \infty \).

 c. \(\ln(x) = o(x^n) \) as \(x \to \infty \).

4. If \(f(x) = O(\phi(x)) \) and \(g(x) = O(\psi(x)) \), then \(f(x) + g(x) = O(\phi(x) + \psi(x)) \).

5. Taylor’s theorem. If \(f \) is \(n \)-times differentiable on \([a,b]\) and \(x, x_0 \in [a,b] \), then for \(h = x - x_0 \)

\[
f(x) = f(x_0 + h) = f(x_0) + f'(x_0) \cdot h + \cdots + \frac{f^{(n)}(x_0)}{n!} \cdot h^n + O(h^{n+1})
\]

\(^1\)The symbol \(O(x) \) first appeared in the second edition of Bachmann’s Analytic Number Theory [Bachmann 1894 (in German)], and Landau obtained this notation from Bachmann’s book (Landau 1909, p. 883). However, the symbol \(o(x) \) did originate with Landau (1909) in place of the earlier notation \(\{x\} \).