Maple commands: (all require the command with(plots); first)
To plot a function of the form \(z = f(x,y) \) - plot3d\((f(x,y), x=\text{range of } x, y=\text{range of } y)\);
To plot a function of the form \(f(x,y,z) = 0 \) (i.e. \(z \) is not solved for) – implicitplot3d\((f(x,y,z)=0, x=\text{range of } x, y=\text{range of } y)\);

To use Maple to help sketch a region of integration for the integral \(\int \int \int_{V} f(x,y,z) \, dz \, dx \), you can have Maple plot the function \(y = \sqrt{1-z^2} \), then plot the curves for \(z \) in 2 dimensions.

1. Use Maple to help sketch the region of integration in three dimensions for the following integrals.
 a. \(\int_{-1}^{1} \int_{0}^{1} \int_{-z^2}^{1-z^2} f(x,y,z) \, dz \, dx \)
 b. \(\int_{-1}^{1} \int_{0}^{1} \int_{0}^{x^2+y^2} xz \, dz \, dy \)
 c. \(\int_{0}^{1} \int_{0}^{1} \int_{0}^{\sqrt{1-x^2-y^2}} f(x,y,z) \, dz \, dy \)

2. Convert the integral in 1b to cylindrical coordinates.

3. Let \(T \) be the tetrahedron bounded by the coordinate planes and the plane \(2x + 3y + 6z = 12 \). Set up an iterated triple integral to compute the volume of \(T \) using the differential
 a. \(dx \, dy \, dz \)
 b. \(dz \, dy \, dx \)

4. Use Maple to help sketch the region \(R \) which is bounded by \(z = x \), \(z = x^2 \), and the planes \(y = 0 \) and \(y = 3 \). Find the volume of the region \(R \) either with Maple or by hand.

5. Use cylindrical coordinates to compute \(\iiint_{S} y \, dV \) where \(S \) is the region in the first octant bounded by the cylinder \(x^2 + y^2 = 1 \) and the plane \(z = x \). Use Maple to help sketch the region of integration

Homework: Read Section 14.6. Try exercises #11-18, 21, 22, and 24 on page 823.

Solutions:
2. \(\int_{-1}^{1} \int_{0}^{1} \int_{-\frac{x^2}{2}}^{\frac{x^2}{2}} r^2 \cos\theta \, dz \, dr \, d\theta \)
3. \(\int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{(12-6\cos\theta)}{2}} r^2 \, dz \, dx \, dy \) and \(\int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{(12-2r^2)}{6}} \sin\theta \, dz \, dy \, d\theta \)
4. \(\int_{0}^{1} \int_{0}^{1} \int_{0}^{x^2} \, dz \, dy \, dx = \frac{1}{2} \)
5. \(\int_{0}^{1} \int_{0}^{1} \int_{0}^{r \cos\theta} \, r^2 \sin\theta \, dz \, dr \, d\theta = \frac{1}{8} \)