Problem Session – Green January 18, 2006

Do the following problems on a separate sheet of paper and hand in at the end of the period (there is nothing to do on the first 2 problems).

1. Maple commands for plotting a function in 3-dimensions of the form $z = f(x,y)$ where x ranges between a and b and y ranges between c and d is

 - with(plots):
 - plot3d($f(x,y), x = a .. b, y = c .. d$);

 Use the plot3d command to plot the surface given by the equation $z = x^2 - y^2$. Let x and y both range between –5 and 5. Click on the picture while still holding down the button and move the mouse to rotate the picture. This surface is a type of “saddle”. Giddy up!!

2. Maple commands for plotting an equation in 3-dimensions of the form $f(x,y,z) = 0$ where x ranges between a and b, y ranges between c and d, and z ranges between e and f is

 - with(plots):
 - implicitplot3d($f(x,y,z) = 0, x = a .. b, y = c .. d, z = e .. f$);

 where you put in your given equation for $f(x,y,z) = 0$. Use Maple to plot the sphere $x^2 + y^2 + z^2 = 9$ where x, y, and z all range between –3 and 3. If you click on the 1-1 button, all axes will be equally spaced so it will look like a sphere. Move it around.

3. To plot a parametric curve $x = x(t), y = y(t), a \leq t \leq b$ in Maple, the command is

 - plot([$x(t), y(t), t = a .. b$]);

 Let C be the curve described by the parametric equations $x = t^2 - 4$ and $y = \frac{t}{2}$, $-2 \leq t \leq 3$.

 a. Eliminate the variable t to find a relationship between x and y.

 b. Write the Maple command to plot C. Use Maple to plot the curve and draw a sketch of the curve from Maple.

4. Convert the polar equation $r = 3\csc \theta$ to rectangular form.

 To plot a polar equation $r = f(\theta)$, $a \leq \theta \leq b$ in Maple, the command is

 - polarplot($f(t), t = a \ldots b$); (we use t because it is easier to type in Maple than θ).

 Write the Maple command to plot the polar equation above. Plot it in Maple to check your answer.

4. Convert the equation $y^2 = 9x$ to polar form and simplify.
5. Let $r = 2 + 3\sin\theta$.
 a. Fill in the following table of values

<table>
<thead>
<tr>
<th>θ</th>
<th>0</th>
<th>$\pi/4$</th>
<th>$\pi/2$</th>
<th>$3\pi/4$</th>
<th>π</th>
<th>$5\pi/4$</th>
<th>$3\pi/2$</th>
<th>$7\pi/4$</th>
<th>2π</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 b. Use Maple to plot the curve between 0 and 2π. Find your points in the table above on the curve.

6. Let $\vec{u} = (5,1)$ and $\vec{v} = (-1,2)$.
 a. Graph $\vec{u}, \vec{v}, \vec{u} + \vec{v}$, and $\vec{u} - \vec{v}$ on the same graph.
 b. Find $|\vec{u}|$ and find a unit vector in the direction of \vec{u}. (You can find it in the book).